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Abstract—In this paper we present the application of a
projective geometry tool known as Conformal Geometric Algebra
(CGA) to transmission line theory. Explicit relationships between
the Smith Chart, Riemann Sphere, and CGA are developed to
illustrate the evolution of projective geometry in transmission
line theory. By using CGA, fundamental network operations
such as adding impedance, admittance, and changing lines
impedance can be implemented with rotations, and are shown
to form a group. Additionally, the transformations relating
different circuit representations such as impedance, admittance,
and reflection coefficient are also related by rotations. Thus,
the majority of relationships in transmission line theory are
linearized. Conventional transmission line formulas are replaced
with an operator-based framework. Use of the framework is
demonstrated by analyzing the distributed element model and
solving some impedance matching problems.

I. INTRODUCTION

A. Context and Motivation

Complex numbers are ubiquitous in science and engineering
mainly because they provide a powerful way to represent
and manipulate rotations. Despite their usefulness, complex
numbers are limited to rotations in two-dimensions. This is a
serious drawback given that many problems in physics and en-
gineering are inherently multi-dimensional. As a work-around,
most high-dimensional problems are solved using matrices
of complex numbers, effectively modeling a high-dimensional
space using sets of 2D sub-spaces. While an amazing set of
problems have been tackled using this technique, the solutions
can be overly complicated and often miraculous. Furthermore,
it produces theories and models that are difficult to understand
and extend.

A better approach might be to use a high dimensional alge-
bra for high dimensional problems. For it stands to reason that
if the ability to efficiently handle rotations in two dimensions
has been so successful in science and engineering, then a
similar ability in higher dimensions should be even more so.

B. Previous Work

Projective geometry has been used as a conceptual tool to
generate various impedance charts since the 1930’s [1]. Several
such charts, including the Smith Chart, can be constructed
using stereographic projection onto the Riemann Sphere. Al-
though it has been known to microwave engineers for over
50 years, the Riemann sphere continues to spark interest [2].
Unfortunately, the inability of complex algebra to handle rota-
tions in three-dimensional space makes the Riemann Sphere an

impractical tool. In order to make use of projective geometry, a
higher algebra is required. Quaternions can be used for three-
dimensional applications such as the Riemann sphere, but they
do not scale to four or higher dimensions. In addition, neither
quaternions nor complex numbers are adequate tools for non-
euclidean geometry, which is the natural geometry for several
parts of transmission line theory [3].

Geometric Algebra (GA) subsumes complex algebra,
quaternions, linear algebra and several other independent
mathematical systems. Additionally, GA supports both arbi-
trary dimensions and non-euclidean geometries, making it an
attractive tool for applications in transmission line theory.
The usage of geometric algebra in electrical engineering was
pioneered by E. F. Bolinder in the 1950s, and continued
throughout his career [4]–[6]. Unfortunately, it does not appear
that anyone directly extended his work. We attribute this to the
complexity and specialization of his applications combined
with the rapid development of the geometric algebra during
his time. However, recently there has been a resurgence
of interest in using GA in electrical engineering problems,
as demonstrated by the invited cover article of the 2014
“Proceedings of the IEEE” entitled "Geometric Algebra for
Electrical and Electronic Engineers" [7]. In part, this interest is
due to the publication of application-oriented, comprehensive
texts on the subject [8], [9], making geometric algebra more
accessible to scientists and engineers than ever before.

C. Outline

In this paper we present the application of the projective
geometry tool known as Conformal Geometric Algebra (CGA)
to transmission line theory. CGA is a specific construction
in GA which is used to linearize conformal transformations.
Although somewhat foreign to RF and Microwave engineers
at this time, CGA has been successfully applied in the fields
of computer graphics [10]–[12] and robotics [13].

Section II begins with a geometric interpretation of complex
numbers, as used in linear system theory. This example
is given to provide context and demonstrate that projective
geometry is implicit in the conventional theory currently used
by engineers. Once these observations are put forth, translation
from complex algebra into geometric algebra begins. First,
complex numbers representing values of reflection coefficient
are translated into vectors of a two-dimensional geometric
algebra. Next, the Smith Chart is mapped onto the Riemann
Sphere using stereographic projection in Section III. The
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sphere is used in Section IV to demonstrate that the different
circuit representations are related by rotations of the sphere.
Section V provides some example applications of the sphere.
Various shortcomings associated with the Riemann Sphere
are identified and this motivates the use conformal geometric
algebra (CGA). The basics of CGA are briefly described and
then its application to transmission line theory is presented
in Section VI. This approach leads to the identification of
a group structure present in the discrete circuit elements,
and depicts their actions on the Smith Chart. The discrete
element operators are used in Section VII to explore the
distributed element model of a transmission line. It is shown
that mismatched transmission lines produce non-euclidean
rotations which encircle their characteristic impedance, and
these are uniquely represented with CGA. Next, some simple
impedance matching circuits are analyzed in Section VIII
for demonstration. Section IX presents an argument for the
adoption of CGA transmission line theory. This section can
be read out of order, but is presented last so that some of the
claims may be appreciated. Finally, the results are compiled
in Section X and discussed.

Although a brief introduction to GA is given, fluency in
geometric and conformal geometric algebra requires additional
study. Comprehensive introductions to these subjects is beyond
the scope of this article, and have been adequately presented
elsewhere [8], [9], [14]. We hope that the results and arguments
put forth incite a curiosity and desire in those unacquainted
with the subject to learn more.

II. GEOMETRIC ALGEBRA AND PROJECTIVE GEOMETRY

A. Complex Numbers Linearize Phase Shifts

Engineers use complex numbers in a variety of creative
ways. One of the most fruitful applications of complex num-
bers is to linearize the operation of phase shifting harmonic
signals. This technique is used in linear system analysis, where
arbitrary signals are represented by sums of harmonic signals.
As is well known, given a harmonic excitation applied to a
linear system, the response will be a harmonic signal of the
same frequency but with a possible change in amplitude and
phase shift. The effect of these transforms are represented
graphically in Figure 1. From an operational perspective,
linear time invariant (LTI) systems are operators limited to
transforms of phase scaling and amplitude shifting, when
acting upon harmonic signals.
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Figure 1: The effect of a linear system on a harmonic input signal..
The original solid sinusoid is phase shifted by θ and amplitude scaled
by α, producing the dashed sinusoid.

Since the effect of all linear systems is limited to these
two transformations, it pays to represent them as concisely as
possible in the algebra. The scaling operation is implemented
by scalar multiplication, but the shift operation requires a trick.
Referring to Figure 2; first, a new dimension (e2) is added
orthogonal to the existing two, producing 3-dimensional space.
Next, the sinusoid is modeled as the perpendicular projection
of a helix. Given this construction, it can be seen that rotating
the helix about its longitudinal axis produces a phase shift in
the projection of the sinusoid. Thus, we have replaced a shift
operation with a rotation in a plane. Finally, by recognizing
that a linear system may be represented by the transformation
itself, the sinusoid may be forgotten, and the rotation and
scaling information retained.
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Figure 2: Rotating a helix about the longitudinal axis creates a phase
shift in the projected sinusoid.

B. The Need for Higher Dimensions

In microwave engineering, and other disciplines rooted
in wave-mechanics, the mathematical operations required to
describe a system extend beyond shift and scale. However,
most of the required operations for transmission line analysis
are Möbius transformations. Therefore, the ability to represent
Möbius transformations with rotations should provide a great
increase in algebraic efficiency. As has been well documented
by David Hestenes and others [8], [9], [15], this can be done
using Conformal Geometric Algebra (CGA). Frequently, CGA
is introduced by way of stereographic projection [8]. This
approach provides a transitional geometry between the original
two-dimensional euclidean space and the four-dimensional
Minkowski space of CGA. Additionally, it illustrates how the
Riemann sphere naturally fits into the scheme. The relationship
of the algebras from the complex plane to CGA may be
expressed,

C =⇒ G2︸ ︷︷ ︸
Smith Chart

−→ G3︸︷︷︸
Riemann Sphere

−→ G3,1︸︷︷︸
CGA

. (1)

Before stereographic projection into three-dimensional
space can be done efficiently, Geometric Algebra has to be
adopted. Therefore, we start by translating complex algebra
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into geometric algebra, and then move onto the Riemann
Sphere and its relationship to the Smith Chart.

C. Introduction to Geometric Algebra

Geometric Algebra introduces new types of mathematical
objects and operators beyond those defined by complex or
vector algebra. In this section we introduce some basic con-
cepts, but move on quickly to the application at hand. A good
introduction to GA aimed at electrical engineers can be found
in the article by Chappell et. al. [7], but those seeking a
comprehensive introduction to GA can refer to the first two
chapters of [8] or the first part of [9].

Given a set of vectors which span a space, the elements
of the corresponding geometric algebra are generated by
employing a product known as the outer product, denoted
with a wedge: ∧. The outer product between two non-parallel
vectors produces a new kind of element called a bivector.
Just as vectors represent directed length, bivectors represent
directed areas. In a similar way, the outer product of three
vectors creates a trivector, four vectors create a quadvector,
and so on. An illustration of these elements and the vectors
which generate them is shown in Figure 3. Various N-vectors
can be combined to form a single multivector, analogous
to the way complex numbers combine real and imaginary
parts. Geometric concepts such as quantities, operators, and
subspaces are represented by objects within the algebra and
this produces clarity and concision.

Many results of Geometric Algebra follow intuitively once
commutativity it abandoned. Start by assuming that the square
of a vector is a scalar and that the addition of two vectors
produces another vector. We can then write

(a+ b)2 = a2 + b2 + 2 (ab+ ba) . (2)

So the quantity (ab+ ba) must be a scalar. Define this
symmetric product as the inner product, which is a familiar
concept.

a · b ≡ 1

2
(ab+ ba) (3)

Next, separate the product of two vectors into symmetric
and asymmetric parts

ab =
1

2
(ab+ ba)︸ ︷︷ ︸

symmetric

+
1

2
(ab− ba)︸ ︷︷ ︸

asymmetric

. (4)

Since commutativity is not assumed, we are forced to
interpret the asymmetric part, so define the outer product to
be

a ∧ b ≡ 1

2
(ab− ba) . (5)

Given a ∧ a = 0, the outer product can be interpreted as
the measure of collinearity, analogous to the inner product
as a measure of perpendicularity. The outer product can be
interpreted as the oriented area swept out by sliding one vector
along the other, as shown in Figure 3. Combining both inner

a
a b

a b

<

a b

c

a b

<

c

<

Figure 3: Interpretation of some elements within Geometric Algebra,
highlighting their creation through the use of the outer product. From
left to right there is; a scalar, vector, bivector and tri-vector.

and outer product into a single balanced product known as
the geometric product gives the algebra substantial power and
allows for vector inersion. The three products are related by
the fundamental equation,

ab = a · b+ a ∧ b. (6)

The workings of GA are best understood with some examples,
so the next section introduces the geometric algebra of a plane.
This algebra will be used to translate complex numbers into
our model.

D. The Plane

Given a two-dimensional GA with the orthonormal basis,

ei · ej = δij . (7)

The geometric algebra consists of scalars, two vectors, and
a bivector,

{ α︸︷︷︸
scalar

, e1, e2︸ ︷︷ ︸
vectors

, e1 ∧ e2︸ ︷︷ ︸
bivector

}. (8)

An illustration of the algebra and it’s basis is shown in
Figure 4. The highest dimensional element in a geometric
algebra is commonly referred to as the pseudoscalar, which in
this case is a bivector. Note that due to the orthogonality, the
geometric product between the two basis vectors is equivalent
to the outer product,

e1e2 = e1 · e2 + e ∧ e2 = e1 ∧ e2. (9)

And since the outer product is asymmetric, interchanging
the order of a series of vectors in a product changes it’s sign.

e1e2 = −e2e1 (10)

Using these properties it can be seen that left multiplying a
vector by the bivector rotates it clockwise 90◦.

(e1 ∧ e2) e1 = e1e2e1 = −e21e2 = −e2 (11)

Right multiplying a vector by the bivector rotates it counter-
clockwise by 90◦.

e1 (e1 ∧ e2) = e1e1e2 = e21e2 = e2 (12)

And, the bivector squares to −1.

(e1 ∧ e2)
2

= e1e2e1e2 = −1 (13)
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Figure 4: Geometric Algebra for a plane, illustrating the basis
elements. e1 and e2 are vectors, and e1 ∧ e2 is a bivector.

Because of this property, the bivector can be used to replace
the unit imaginary. For concision, bivector elements will be
written with paired subscripts as such,

e12 ≡ e1e2. (14)

E. Projections, Reflection, and Rotations

A major advantage of GA is that operators are represented
as elements within the algebra. Since the geometric product
between two vectors contains all the information regarding
their relative directions, it can be used to define projections.
By multiplying the vector a with the square of a unit vector
n, it can be decomposed into parts parallel and perpendicular
to n.

a = an2 = (an)n = (a · n)n︸ ︷︷ ︸
a‖

+ (a ∧ n)n︸ ︷︷ ︸
a⊥

(15)

The parallel component is the projection of a onto n, while
the perpendicular component is the rejection of a from n. This
formula can be used in the computation of reflections. The
reflection of a vector a in the hyperplane perpendicular to the
normalized vector n is

a′ = −nan. (16)

To prove that this is a reflection, decompose a into parts
parallel and perpendicular to n, and note that the parallel com-
ponent commutes with n while the perpendicular component
anti-commutes with n.

−nan = −n
(
a⊥ + a‖

)
n

= −na⊥n− na‖n
= n2a⊥ − n2a‖
= a⊥ − a‖ (17)

Which is a reflection in the hyperplane normal to n.
Rotations can be constructed by cascading two reflections, but
we just present the formulas directly since electrical engineers
are familiar with complex numbers. Because e12 squares to
−1, we can use Euler’s identity to write,

Z = eθe12 = cos θ + sin θe12. (18)

This is an example of a rotation operator known as a rotor
in GA, and it acts through the geometric product. For example,
to rotate the vector e1 clockwise by angle θ we form

1

i

Complex Plane

e12

1

Spinor e12-Plane

e1

e2

Vector Plane

z

α

β

Z z

Contained in G2

α

β

α

β

Figure 5: Map between the complex plane, spinor e12-plane, and a
vector plane.

Ze1 = eθe12e1 = cos θe1 − sin θe2. (19)

While this formula works in two dimensions, rotations in
three dimensions and above require a double-sided, half-angle
formula so it is best to adopt it from the beginning. The same
rotation expressed with the double-sided formula becomes,

e
θ
2 e12e1e

− θ2 e12 = cos θe1 − sin θe2. (20)

A frequently used algebraic operation is to reverse the
order of all vectors within a product, known as reversion and
represented with a tilde (~). The reverse of a rotor is computed
to be,

Z̃ = cos θ + sin θ ˜e12 = cos θ − sin θe12. (21)

Using this notation, the rotation of a vector a by a rotor Z
is written,

a′ = ZaZ̃. (22)

If the rotor has a magnitude other than unity, it will affect a
scaling operation as well as a rotation. In this case, the operator
is called a spinor. The next section shows how complex
numbers can be identified as spinors in a two-dimensional
geometric algebra, and mapped into vectors.

F. Translating Complex Numbers

To keep different objects in the various algebras distinct,
we write complex numbers in bold face lower-case: z, GA
vectors in italic: z, and spinors/multivectors in uppercase italic:
Z. Scalars in all algebras are equivalent, and are represented
with greek italics, α, β, unless agreement with existing theory
demands otherwise. In complex algebra there is no distinction
between rotation/dilation operators and vectors. However, in
GA, vectors are vectors and rotation/dilation operators are
spinors. Choosing which object to map a complex number
onto is a design choice. We choose to model impedance,
admittance, and reflection coefficient values as vectors, while
the effects of changing domains or adding circuit elements are
modeled as spinors.

The conversion from complex numbers to vectors is done in
two steps. First, complex numbers are identified as the spinors
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of a two-dimensional GA. These spinors can be transformed
into vectors by choosing a reference direction. Graphically, this
can be visualized as a map between the complex plane, the
spinor plane, and the vector plane, as illustrated in Figure 5.
Given the geometric algebra for a plane defined in the previous
section, a complex number can be directly associated with a
2D spinor in the e12-plane,

z = α+ βi︸ ︷︷ ︸
complex number

=⇒ Z = α+ βe12︸ ︷︷ ︸
2D spinor

. (23)

The spinor is then mapped to a vector by choosing a
reference direction. This may be done by left multiplying with
e1.

Z =⇒ e1Z = e1α+ βe1e12 = αe1 + βe2︸ ︷︷ ︸
vector

. (24)

Although trivial, the need for this explicit map is useful
when translating operations on the complex numbers to their
vector equivalents. For example, complex conjugation trans-
lates to reversion of the spinor, which in turn translates into
reflection of the vector in the hyperplane normal to e2.

z† = α− βi =⇒ Z̃ = α− βe12 (25)

e1Z̃ =⇒ αe1 − βe2 = −e2ze2 (26)

Additionally, complex inversion differs from vector inver-
sion by a reflection in the hyperplane normal to e2.

z−1 =
z†

z†z
=

z†

|z|2
=⇒ Z̃

|Z|2
(27)

e1
Z̃

|Z|2
=⇒ −e2z−1e2 (28)

When a complex number is associated with a spinor, a
rotation orientation ( clockwise vs counter clockwise) must be
chosen. We choose to represent rotations by the conventions
used in [8],

z′ = RzR̃. (29)

Given this choice, a counterclockwise rotation by θ in the
e12-plane is accomplished by the spinor,

R = e
θ
2 e12 . (30)

Therefore the relation between a rotation in complex algebra
and spinors is

z′ = e−θjz ⇒ z′ = e
θ
2 e12ze−

θ
2 e12 . (31)

The rotation orientation of complex number aligns with the
reversed rotor on the right-hand side of the formula.

e1 e2

e3

e 12

e
23e31

Figure 6: Geometric algebra for three dimensional space, illustrating
the vector and bivector basis.

III. THE RIEMANN SPHERE

A. Introduction

Solving transmission line problems in terms of reflection co-
efficient is advantageous because passive devices are confined
to a closed space, the unit circle. This removes the singularities
produced by ideal shorts and open circuits in the impedance or
admittance domain. By overlaying the contours of the Smith
Chart onto the unit circle, the operations of adding impedance
and admittance can be handled graphically. The result is a
highly efficient nomogram which can be used to visualize
and compute how various circuit elements alter the reflection
coefficient.

Extending this approach, the Riemann Sphere constrains
both passive and active devices to a closed space, the unit
sphere. More importantly, it allows the transformation between
impedance, admittance and reflection coefficient to be accom-
plished through rotations. The Riemann Sphere, as it relates to
the Smith Chart, has been explored by a variety of researchers
[1], [2], [16]. However, it does not share the widespread
adoption similar to the Smith Chart. Perhaps this is due to the
increase in geometric complexity without a sufficiently rich
algebra, or perhaps because spheres are hard to draw!

B. Geometric Algebra of Three Dimensional Space

This section introduces the geometric algebra of three
dimensional space so that it can be used to work with the
Riemann Sphere. Starting with an orthonormal vector basis
defined by,

ei · ej = δij . (32)

The geometric algebra of space is generated and contains
the following elements,

α︸︷︷︸
1−scalar

, ei︸︷︷︸
3-vectors

, eij︸︷︷︸
3−bivectors

, e123︸︷︷︸
1-trivector

. (33)

Again, the term pseudoscalar is used to describe the highest
dimensional blade in any geometric algebra, which in this case
is a tri-vector. An illustration of the vector and bivector basis
is shown in Figure 6. The geometric algebra can be used to
define projections, reflections, rotations, and all other vector
algebra operations, but we limit our attention to rotations. First,
note that each bivector squares to minus one,
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e1

e2S-plane

e3

Figure 7: Vector Basis Set for the Smith Sphere

e212 = e223 = e231 = −1. (34)

When bivectors are multiplied together they return bivec-
tors.

e12e23 = −e31 (35)
e12e31 = −e21 (36)
e31e12 = −e23 (37)

These multiplication rules may be recognized as those of the
quaternion algebra, and indeed quaternions are nothing more
than spinors of a three dimensional space. The beauty is that
rotations can be implemented in an identical way as in two-
dimensions. To demonstrate, take a vector a = e1 + e2 + e3
and rotate it in the e12-plane by an angle θ.

a′ = e
θ
2 e12ae−

θ
2 e12 (38)

= e
θ
2 e12 (e1 + e2 + e3) e−

θ
2 e12 (39)

To compute the result the rotor can be distributed to each
component individually and then combined to form the total
result. Doing this illustrates how vectors within the plane of
rotation are affected, while vectors orthogonal to the plane
of rotation are left invariant. Computing the rotation of each
component,

e
θ
2 e12e1e

− θ2 e12 = cos θe1 − sin θe2 (40)

e
θ
2 e12e2e

− θ2 e12 = cos θe2 + sin θe1 (41)

e
θ
2 e12e3e

− θ2 e12 = e3. (42)

Finally, sum the components to form the final result.

a′ = (cos θ + sin θ) e1 + (cos θ − sin θ) e2 + e3 (43)

Rotations of this sort will be used extensively in the
applications to follow.

C. Stereographic Projection

Stereographic projection onto the Riemann Sphere is a well
known procedure but we will review it to make clear our
notation and demonstrate the concision of geometric algebra.
Beginning with a plane representing the reflection coefficient
domain, the conventional contours familiar to Smith Chart
users are drawn. This plane is spanned by the orthonormal
vectors e1 and e2, as shown in Figure 7. These vectors

correspond to the real and imaginary components of complex
number as described in the previous section. Due to use
of s-parameters in multi-port network analysis, we label the
reflection coefficient plane the S-plane.

From the e12−plane, an additional dimension is added
perpendicular to the existing two labeled e3 producing a three-
dimensional geometric algebra, as defined in the previous
section. To eliminate the added degree of freedom, the entire
S-plane is mapped to the surface of a unit sphere through
stereographic projection, defined as follows. Let s be a point
in the S-plane and p be the corresponding point lying on the
surface of the unit sphere. A ray connecting the projection
point e3 to the point in the S-plane ‘s’ is drawn, as illustrated
in Figure 8. The intersection of the ray with the surface of
the sphere defines p. When |s| < 1, the ray is be projected
through the S-plane, onto the interior of the sphere.

e1

e2S-plane

e3

s

p

Figure 8: Stereographic projection of reflection coefficient plane (s-
plane) onto Riemann Sphere. The point s in the plane is mapped to
the point p on the sphere.

D. Projection Up to Sphere
The first step is to determine p given s. From Figure 8 it is

geometrically obvious that

p = e3 + λ (s− e3) , (44)

where λ is some scalar. The condition that p lie on a unit
sphere as well as orthonormal condition on e3 provides the
following constraints,

p2 = 1 e23 = 1 e3 · s = 0. (45)

Enforcing these conditions allows λ to be found,

p · p = (e3 + λ (s− e3)) · (e3 + λ (s− e3))

1 = 1 + λ2
(
s2 + 1

)
− 2λ

λ =
2

s2 + 1
. (46)

Putting this back into eq (44) provides the functional
relationship for a point on the sphere in terms of a point on
the S-plane.

p =↑ (s) ≡ e3 +
2

s2 + 1
(s− e3) (47)

Although the proof was based on geometry of mapping a
plane to a sphere, the result holds true for any dimension [8].
Equation (47) may be re-arranged to separate components in
the original plane and added dimension.

↑ (s) =

(
s2 − 1

s2 + 1

)
e3 +

(
2

s2 + 1

)
s (48)



2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727819, IEEE Access

7

e3

s

pe3 p

p s

e3 s

Figure 9: Relationship of bivectors involved in stereographic projec-
tion.

E. Projection Down to Plane

The second step in stereographic projection is to map a
point on the sphere back to a point on the plane. Begin by
observing that points e3, p, and s are collinear, as expressed
by

e3 ∧ p+ p ∧ s = e3 ∧ s. (49)

This bivector equation may be illustrated by drawing a 2D
slice of the sphere defined by e3 and s, as shown in Figure 9.
Next, decompose p into components parallel and perpendicular
to e3.

p = e3 (e3 · p)︸ ︷︷ ︸
p‖

+ e3 (e3 ∧ p)︸ ︷︷ ︸
p⊥

(50)

Using this in (49),

e3 ∧
(
p‖ + p⊥

)
+
(
p‖ + p⊥

)
∧ s = e3 ∧ s

e3p⊥ + p‖s = e3s. (51)

Multiplying by e3 and solving for s, we find

s =↓ (p) ≡ e3 (e3 ∧ p)
1− e3 · p

. (52)

This formula can be interpreted as the rejection of p from e3,
normalized by a factor of (1− e3 · p). It should be recognized
that while we have used the variable s to represent a point
on the S-plane, these formulae hold true regardless of the
interpretation of the plane.

IV. CIRCUIT TRANSFORMATIONS

Once the functional relationship between the plane and
sphere are known, operations within the plane can be translated
into operations on the sphere. In this section the transforma-
tions between reflection coefficient, impedance, and admit-
tance are shown to be implemented by rotations of the sphere.
The commutative diagram shown in Figure 10 illustrates the
scheme.

bilinear

rotation

Sphere

Plane

up down

s z

ps pz

Figure 10: Commutative diagram illustrating the purpose of Stereo-
graphic projection.

A. S-to-Z

Instead of immediately resorting to mathematical proof, the
relationship between reflection coefficient and impedance can
be deduced geometrically by inspecting some values in both
domains. Up-projecting the points ±1, 0, and ∞ to the sphere
gives the north/south and east/west poles meaningful values.
By labeling each pole with the corresponding normalized
impedance value, as shown Figure 11, a pattern arises. The
observed relationship between the s and z at the poles suggest
that these two representations are related by a 90◦ rotation in
the e13-plane.

e3

e1

e2S-plane

1s,∞z

∞s,-1z

-1s,0z

0s,1z

Figure 11: The Smith Chart mapped to the Riemann sphere. The poles
in the e13-plane labeled with values in both reflection coefficient s,
and impedance z-domains.

To test this hypothesis, start with the point ps in terms of
s,

ps = e3 +
2

s2 + 1
(s− e3) . (53)

Rotate the point by 90◦ in the e13 plane, producing pz .

pz = e−
π
4 e13pse

π
4 e13

= e1 +
2

s2 + 1
(−s1e3 + s2e2 − e1) (54)

and then down-project into the plane.

z =
e3 (e3 ∧ pz)
1− e3 · pz

=
1

1− 2s1
s2+1

(
e1 +

2

s2 + 1
(s2e2 − e1)

)
(55)

Which after some tedious simplifications produces,

z =
1 + s

1− s
, (56)
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proving the hypothesis. The rotor which rotates the s into
z is defined as

Rzs ≡ e−
π
4 e13 . (57)

The inverse transformation from impedance to reflection
coefficient can be found by reversing the rotation orientation,

Rsz = R̃zs = e
π
4 e13 . (58)

The subscript ordering makes sense when the rotors are used
in the sandwich formula.

pz = RzspsR̃zs = RzspsRsz (59)

Once the original point ps is transformed into impedance
pz , the plane is re-interpreted as the Z-plane.

B. Z-to-Y

In the complex domain, impedance and admittance values
are related by complex inversion.

y = z−1 (60)

Complex inversion is a widely used transform, so it is well
known that it can be achieved through rotation of the Riemann
sphere by 180◦ about the real axis [17]. Again, this can be
deduced by up-projecting the points ±j, 0, and ∞ onto the
sphere and noticing how they move after an inversion, or
through a proof similar to the last section. However, since
this transform is well known it suffices to simply express it
in rotor form. As described in Section II-F, complex inversion
is equivalent to vector inversion followed by reflection in the
hyperplane normal to e2,

py = e2e3pze3e2. (61)

Since two reflections produce a rotation, this can be ex-
pressed a 180◦ rotation in the e23-plane (analogous to a
rotation about the real-axis),

Rzy ≡ e2e3 = e−
π
2 e23 . (62)

Because the rotation is through 180◦, the inverse is itself.

Rzy = Ryz (63)

C. S-to-Y

The remaining transform between admittance and reflection
coefficient can be found by combining the previous two. The
result must be a rotation because it is a combination of two
rotations.

Rsy = RszRzy = e
π
4 e13e−

π
2 e23

=

√
2

2
(1 + e13)e23

= e
− π

2
√

2
(e23+e21) (64)

In three dimensions, taking the dual of the bivector argu-
ment gives the axis of the rotation.

(e23 + e21) e123 = −e1 + e3 (65)

Which demonstrates that this is a rotation about the
(e3 − e1)-axis. The relationships between the different circuit
representations are illustrated by the graph in Figure 12.

S

Z

Y

e134+-

(e23+e21)2
+-

e23
π
2

+-

2

π

π

Figure 12: Graph representing of transformations relating different
domains. Each path is labeled with the respective bivector.

D. Summary

To summarize, Table I lists the various basis transformations
and their generating bivectors, otherwise known as generators.
Each is compared to the equivalent expression in complex
algebra.

Relation Generator Complex Algebra

Z2S π
4
e13

z−1
z+1

S2Z −π
4
e13

1+s
1−s

Z2Y -π
2
e23

1
z

Y2Z -π
2
e23

1
y

S2Y π
2
√
2
(e23 + e21)

1+s
1−s

Y2S − π
2
√
2
(e23 + e21)

1−y
1+y

Table I: Basis transformations, their associated generating bivectors,
and complex algebra equivalents.

E. Alternative Perspectives

The Riemann Sphere model presented above leaves the
projection point and plane stationary throughout the analysis,
while the projected point p is rotated about the sphere. In
doing so, it forces one to re-interpret the projection plane
each time a basis transformation is employed. A geometrical
interpretation of this extrinsic interpretation is illustrated in
Figure 13a. An alternative model is to fix a given circuit’s
position on the sphere and use different projection points and
planes when translating into different 2D sub-spaces. This
construction has the advantage that a physical circuit has a
unique position on the sphere, and can be simultaneously
projected into all domains, as illustrated in Figure 13b, and 14.
The three different projection points are labeled as points of
infinity in their respective domain. In contrast to the extrinsic
model, the later interpretation may be called intrinsic model.
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ps

s

S,Z ,Y∞

pz

z

py

y

e13-plane

(a) Extrinsic model of the Rie-
mann Sphere, as seen projected
onto the e13-plane. The second
rotation from pz → py is about
the horizontal axis.

p

z

s

y

Y∞

S∞

Z∞

e13-plane

(b) Intrinsic model of the Riemann
Sphere, as seen projected onto the
e13-plane.

Figure 13: Intrinsic and Extrinsic models for the Riemann Sphere.

e3

e1

e2S-plane

Y-plane

Z-
pl
an

e

S∞

Z∞Y∞

Z-plane

Figure 14: Intrinsic model of the Riemann Sphere in 3-dimensions.

The terms extrinsic/intrinsic are borrowed from a the subject
of Euler angles, in which a similar dichotomy exists.

Using the intrinsic model, the different circuit representa-
tions can be seen as different basis sets, related by rotations.
Any problem should be invariant to the basis that is chosen
to frame it, and projective geometry provides this invariance.
The basis rotors found above may be for either the intrinsic
or extrinsic model. In the extrinsic model, the rotors act on
the projected points laying on the sphere. In the intrinsic
model the reversed rotors act on the projection point and plane.
The bivectors must be reversed with translating between the
intrinsic and extrinsic interpretations because the basis frame
must rotate in an opposite orientation as points on the sphere.
In the interest of simplicity and backward compatibility, we
stick to the extrinsic model for the following analysis, but
knowing that other perspective exist is useful.

V. APPLICATIONS

A. Basic Use of Domain Transforms

To demonstrate usage of the basis rotors, an ideal short with
impedance z = 0, is transformed from the impedance domain
into the reflection coefficient domain. First, up-projecting 0
onto the sphere,

pz = ↑ (0) = −e3. (66)

Then rotate into the reflection coefficient domain,

ps = Rsze3Rzs

=
1

2
e
π
4 e13 (e3) e−

π
4 e13

= −e1. (67)

Then down project into the plane

s =↓ (ps) =↓ (−e1) = −e1. (68)

Which is the expected result. Obviously, for this trivial
example the overhead of projecting up and down outweighs
any efficiency gained from linearizion. However, once the
projective space becomes familiar there is no need start in
2D or down-project a result. For numerical applications up or
down projecting are unnecessary unless the input or output of
a given calculation is required to be translated.

B. Input Impedance of a Transmission line

In this section we demonstrate how the domain rotors
can also be used to transform circuit operators. Specifically,
the effect of a matched transmission line is rotated from
the reflection coefficient domain to the impedance domain.
Interpreting the original e12-plane as a reflection coefficient,
the action of cascading a matched transmission line of length
θ in front of the load performs a rotation of −2θ degrees in
the plane, which may be written

p′ = eθe12pe−θe12 . (69)

For brevity, define the matched line operator acting on s-
parameters to be

Ls = Ls (θ) ≡ eθe12 . (70)

Any functional dependence on arguments, ie L(θ), is be
dropped unless relevant to the problem. For this section,
and this section only, the operator subscripts s, z, and y are
used to denote the basis of an operator. In future sections,
the functional invariance provided by CGA makes switching
domains unnecessary and operator subscript are used for other
purposes.

Given the operator for a matched transmission line in
reflection coefficient domain, the equivalent operator in the
impedance domain can be found by employing the basis rotors
on the input and output quantities. This is done in three
steps; first, transform the input quantity from impedance to
reflection coefficient, apply the known Ls operator, and then
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transform back to impedance. The mapping is depicted in the
commutative diagram shown in Figure 15.

Sphere

Plane

up down

z z'

pz

Rsz Rzs

Ls

Lz p'z

ps p's

Figure 15: Commutative diagram illustrating how operators are
transformed between different basis.

To illustrate, the computational flow is described step-by-
step.

1) Take the original impedance vector z and project it onto
the sphere yielding pz .

pz = ↑(z) (71)

2) Transform to s-parameters with the basis rotation.

ps = RszpzRzs (72)

3) Apply the matched transmission line operator Ls,

p′s = LspsL̃s. (73)

4) Transform back to impedance space.

p′z = Rzsp
′
sRsz (74)

Since all of these operators are rotations, the composite
effect is also a rotation. To determine the net result, the series
of operations may be written in a single expression,

p′z = Rzs

apply line︷ ︸︸ ︷
LsRszpzRzs︸ ︷︷ ︸

Z2S

L̃sRsz

︸ ︷︷ ︸
S2Z

. (75)

Using the properties of reversion, equation (75) may be re-
written as,

p′z = (RzsLsRsz) pz (RzsLsRsz)
∼
. (76)

Which gives the relationship between the matched line
operator in the impedance and reflection coefficient,

Lz = RzsLsRsz. (77)

Thus, circuit operators are transformed into different rep-
resentations just like circuit quantities, a property known as
covariance [9]. This is a major conceptual and computational
advantage of using geometric algebra for projective geometry.
To determine Lz the rotors are expanded and simplified,

Lz = RzsLsRsz

= e−
π
4 e13eθe12e

π
4 e13

= cos (θ) +
1

2
(1− e13) sin θe12 (1 + e13)

= cos (θ)− sin θe23

= e−θe23 . (78)

The effect of a series transmission line in the impedance
domain is a rotation in the e23-plane. Interpreting the result
geometrically, it is obvious that rotating the e12-plane by 90◦

about the e2-axis produces e23, so the proof is not really
neccesary. Note that when θ = π

2 , a series transmission line
is equivalent to the basis transformation between impedance
and admittance. The matched line operator can be translated
into admittance similarly,

Ly (θ) = RyzLz (θ)Rzy

= e
π
2 e23e−θe23e−

π
2 e23

= e−θe23

= Lz (θ) . (79)

This shows that a matched transmission line effects
impedance and admittance in an identical way. By combining
the Riemann sphere with the power of rotors, expressions
provided by the conventional two-dimensional theory are
substantially simplified. Additionally, the functional form of
the circuit is not dependent on the domain in which it is inter-
preted, which removes the need to constantly switch domains
within a single problem. In other words, the framework is
domain-invariant. A comparison of the matched transmission
line bivectors and their corresponding formula in the conven-
tional two-dimensional theory is shown in Table II.

Domain Generator Complex Algebra

s θe12 e−2θjs

z −θe23 z+j tan(θ)
1+zj tan(θ)

y −θe23 y+j tan(θ)
1+yj tan(θ)

Table II: Comparison of the generators representing a matched
transmission line compared to their complex algebra equivalents.

C. Problems, and The Need For Another Dimension

It has been shown that by employing the Riemann
sphere, the three major circuit representations may be related
through rotations, producing a geometrical relationship be-
tween impedance, admittance and reflection coefficient. Ad-
ditionally, the start of an operator-based approach to circuit
theory has been demonstrated by mapping the effects of a
matched transmission line onto the sphere and rotating it into
the impedance domain. Throughout the developments, geo-
metric algebra provides the necessary machinery to efficiently
discuss these geometric concepts algebraically.
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While the developments thus far are not without benefit,
the system is missing several important features required for
practical usage. Rotations and domain transformations are
linearized but common operations such as addition and scaling
are awkward to accomplish on the sphere. The solution to
this problem is to add an additional dimension of negative
signature, producing a geometry that is known as Conformal
Geometric Algebra (CGA) [8]. The relationship between the
geometric algebras used for the Smith Chart, Riemann Sphere,
and Conformal models are illustrated below.

C =⇒ G2︸ ︷︷ ︸
Smith Chart

−→ G3︸︷︷︸
Riemann Sphere

−→ G3,1︸︷︷︸
CGA

(80)

All of the basis transformations, and transmission line rotors
developed on the Riemann sphere are directly re-usable in the
CGA framework, so no work is lost by moving into CGA.

VI. CONFORMAL GEOMETRIC ALGEBRA AND
TRANSMISSION LINE THEORY

A full introduction to CGA is out of the scope of this paper.
However, the fundamentals of CGA have been sufficiently
explained by numerous other authors [8], [9], [15], [18], and
we direct the unacquainted to these resources. Our introduction
of CGA by way of stereographic projection is similar to that
given in [8].

A. Mappings

As with stereographic projection, the purpose of CGA is
to map vectors into a space of higher dimension to simplify
certain operations. For our purposes, CGA is used to convert
Möbius transformations into rotations. Building off the stere-
ographic projection model, a vector in a plane is mapped onto
a point on the Riemann Sphere by,

p =

(
x2 − 1

x2 + 1

)
e3 +

(
2

x2 + 1

)
x. (81)

Add to this a new dimension of negative signature repre-
sented by the vector e4, producing a four-dimensional vector
X .

X =

(
x2 − 1

x2 + 1

)
e3 +

(
2

x2 + 1

)
x+ e4 (82)

Because e24 = −1 the vector X is null, meaning X2 = 0.
Therefore, X and λX represent the same point, a property
known as homogeneity. Exploiting this property, X can be
simplified by multiply by

(
x2 + 1

)
yielding,

X =
(
x2 − 1

)
e3 + 2x+

(
x2 + 1

)
e4. (83)

At this point we have an orthonormal vector basis,

e21 = e22 = e23 = −e24 = 1. (84)

Those familiar with relativity will recognize this geometry
as that of space-time. The basis generates a geometric algebra
containing the following blades.

α︸︷︷︸
1−scalar

, ei︸︷︷︸
4-vectors

, eij︸︷︷︸
6−bivectors

, eijk︸︷︷︸
4-trivectors

, I︸︷︷︸
1-pseudoscalar

(85)
Here the e12-plane is identified as the original 2D space, and
e34-plane contains the added dimensions. A consequence of
the vector basis having a mixed signature is that any bivector
containing e4 will have a positive square. This expands the
concept of rotations to include hyperbolic rotations. Applying
Euler’s identity with a bivector of positive square yields,

eθe14 = cosh + sinh θ. (86)

The e34-plane plays a special role and is known as the
Minkowski plane, commonly labeled E0,

E0 ≡ e3 ∧ e4. (87)

It is convenient to further define a null basis.

eo =
1

2
(e4 − e3) (88)

e∞ = e4 + e3 (89)

These two vectors represent the points of infinity and zero,
as their subscripts suggest. They have the properties,

e2o = e2∞ = 0 (90)
e∞eo = −1 + E0. (91)

In terms of the null basis, a vector x in the original space
of e12 is mapped upwards to a conformal vector X , by the
following.

X = ↑(x) = x+
1

2
x2e∞ + eo (92)

The inverse, downwards map, is the made by normalizing
the conformal vector then rejecting it from the Minkowski
plane.

x = ↓ (X) =
X ∧ E0

−X · e∞
E−10 (93)

In the above formula and all others, we adhere to the
convention that the inner and outer products take precedence
over the geometric product. Rotations in different planes
within the CGA space implement various operations in the
original space that are non-linear, such as translation and
involution (negation). Both rotation and reflection operators
follow similar forms, and are referred to as versors in CGA.
Reviewing some common results from the literature [8], a list
of CGA operators which we will make use of are provided in
Table III along with their complex equivalents.
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Operation Complex Function CGA Versor

Translation z+ a e
1
2
e∞a

Rotation eθjz e−
1
2
θe12

Dilation λz e−
1
2
lnλE0

Vector Inversion
(
z†

)−1
e3

Complex Inversion z−1 e23

Involution −z E0

Reflection uncommon a

Table III: Common versors used in CGA, and their complex equiva-
lent.

B. Addition of Impedance and Admittance

The difficulty of implementing addition on Riemann Sphere
is remedied with the use of CGA as we will now show. The
additional of a series impedance is modeled as a translation
in the impedance domain. In CGA, a translation by the vector
z is achieved with a rotation in the e∞ ∧ z plane.

Tz = 1 +
1

2
e∞z (94)

To determine the equivalent operator in the s-domain, the
operator is rotated by the appropriate basis transformation.

Rz = RszTzRzs (95)

Because it is physically meaningful to distinguish resistance
and reactance, we solve for translation in each component
independently. Of course, the results can be combined to
handle arbitrary impedances. Interpreting the e1 direction as
resistance, the effect of adding a normalized resistance of
amount r is produced by,

Tr = 1 +
r

2
e∞e1 = e

r
2 e∞e1 . (96)

Computing the resultant rotation in the s-domain.

Rr = e
π
4 e13e

1
2 e∞re1e−

π
4 e13

=
1

2
(1 + e13)(1 +

1

2
re31 +

1

2
re41)(1− e13)

= 1 +
r

2
e3(e4 + e1)

= e
r
2 (e34−e13) (97)

Modeling the addition of a normalized reactance x by a
translation in e2, the reactance rotor is found,

Rx = e
π
4 e13e

1
2 e∞xe2e−

π
4 e13

= e
x
2 (e12−e24). (98)

A similar analysis yields the rotor for adding conductance
and susceptance.

Rg = RsyTgRys

= e
− π

2
√

2
(e23+e21)e

1
2 e∞ge1e

π
2
√

2
(e23+e21)

= e
g
2 (e34+e13) (99)

Rb = RsyTbRys

= e
− π

2
√

2
(e23+e21)e

1
2 e∞be2e

π
2
√

2
(e23+e21)

= e
b
2 (e12+e24) (100)

The rotors Rr and Rx will rotate a load about circles of
constant reactance and resistance, while Rg and Rb will rotate
a load about circles of constant susceptance and conductance,
respectively. The effects of each rotor as seen on the reflection
coefficient plane are shown in Figure (16). These rotors
sweep out the familiar impedance and admittance contours
of the Smith Chart. However, because these rotations are
non-euclidean they cannot be succinctly represented within
complex algebra. Instead, one has to cascade three individual
operations: transform to impedance, translate, transform to
reflection coefficient. This difficulty is one reason the Smith
Chart is used as a nomogram.

C. Bivector Algebra and Discrete Element Group

One advantage of using geometric algebra is that it exposes
the group structure underlying the transformations [19]. Identi-
fying the bivectors for the impedance/admittance rotors found
above.

R ≡ e34 − e13 (100a)
X ≡ e12 − e24 (100b)
G ≡ e34 + e13 (100c)
B ≡ e12 + e24 (100d)

A bivector group can be found by employing all combina-
tions of the commutator product, defined by

A×B ≡ 1

2
(AB −BA) , (101)

to the bivectors R,X,G and B. When this is done, two new
bivectors are found.

N ≡ e14 (102)
Q ≡ −e23 (103)

The rotors which make use of these bivectors are defined,

Rn ≡ e− ln(n)e14 (104)
Rq ≡ eqe23 . (105)

To determine what operations these bivectors represent, an
arbitrary load can be rotated in the bivector planes of N and Q,
while recording its path on the 2D reflection coefficient plane.
Doing so generates the contours shown in Figure (17), which
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(a) Rotation in R ≡ e34 − e31.

(b) Rotation in X ≡ e12 − e24

(c) Rotation in G ≡ e34 + e13

(d) Rotation in B ≡ e12 + e24

Figure 16: Effects of Rotations in bivectors R,X,G, and B.

R X G B N Q

R 0

X 0 0

G 2N −2Q 0

B −2Q −2N 0 0

N −R −X G B 0

Q X −R −B −G 0 0

Table IV: Commutator table for discrete circuit bivector group.

are recognized as contours of the Carter Chart [1] ( known
in other fields as a Wulff Net). These contours correspond
a change in characteristic impedance magnitude and phase
components. This can be proven by rotating the bivectors
into the impedance domain, and ensuring they correspond to
dilation and rotation generators. First, transform N .

RzsNRsz = e
−π
4 e13e14e

π
4 e13 = e34 (106)

Which is the bivector that generates dilations, while

RzsQRsz = −e
−π
4 e13e23e

π
4 e13 = e12. (107)

Which is the bivector that generates rotations in the original
2D space. The Carter Chart is a polar coordinate system
in impedance domain that has been transformed into the
reflection coefficient domain. Explicitly defining the operators
for changing characteristic impedance is useful for analyzing
transmission line dynamics, as demonstrated in the next sec-
tion.

The Smith Chart with impedance and admittance contours
combined with the Carter Chart represent paths formed from
the rotors of a bivector group. This group contains elements of
impedance, admittance, and characteristic impedance change,
and so it might be referred to as the discrete element group.
Table (IV) provides the commutator relations which define
the group. Identifying circuit elements as a bivector group has
many important consequences. All of the equivalent circuit
relationships, duality properties, and infinitesimal behaviors
can be derived from properties of the group.

The pairs of bivectors used to generate each chart are
orthogonal.

R ·X = G ·B = Q ·N = 0 (108)

So that pairs commute, as one would expect. Each pair is
also inter-related by duality.

RI = X (109)
GI = B (110)
QI = N (111)
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Which shows there is a complex structure within the bivec-
tor algebra, as expressed by the equations.

Z =rR+ xX = (r + xI)R (112)
Y =gG+ bB = (g + bI)G (113)
P =qQ+ nN = (q + nI)Q (114)

The pairs can also be related to one another through
the operation of reflection in the hyperplane normal to e4,
analogous to time-reversal in Space-Time Algebra [20].

x̄ ≡ e4xe4 (115)

This produces the relationships.

R̄ = G (116)
X̄ = B (117)
N̄ = N (118)
Q̄ = −Q (119)

All of the bivectors are simple, meaning they square to a
scalar. Classifying the bivectors based on the sign of their
square turns out to be useful. Borrowing some terminology
from Space-Time Algebra, it may be said that R,X,G and B
are light-like, N is space-like, and Q is time-like, meaning,

R2 = X2 = G2 = B2 = 0 (120)

N2 = −Q2 = 1. (121)

Because the signature we have employed is opposite that
used in Space-Time Algebra, our meaning of space-like and
time-like is inverted.

VII. DISTRIBUTED ELEMENT MODEL

A fundamental part of transmission line theory is the dis-
tributed element model. In this model, a uniform transmission
line is represented as an infinite sum of infinitesimal lumped
elements cascaded together, a unit cell of which is shown in
Figure (18). Normally the properties of transmission line are
studied through differential equations relating voltages and
currents along the lines, but we will examine the dynamics
produced by this model through the CGA operator framework.

A unit cell of the distributed element model is composed of
reactance X , resistance R, susceptance B, and conductance G.
As shown in the previous section, the effect of each component
in the distributed element model is a rotation in the conformal
model. Therefore, to determine the effect of an infinitesimal
element, we need to compute the effect of an infinitesimal
rotation. Following the approach in [9], the rotation of a vector
a by a small bivector δB may be written

e−δBaeδB = a+ δa×B + δ2 (...) . (122)

Where × is the commutator product, and δ2 (...) are higher
order terms which disappear as δ becomes infinitely small.
The subsequent rotation of another small bivector C yields,

(a) Rotation in N ≡ e14

(b) Rotation in Q = −e23.

Figure 17: Effects of Rotations in bivectors N and Q. The contours
are that of the Carter Chart.

X R

B G

X R

B G

X R

B G

Unit Cell

... ...

Figure 18: Distributed element model

e−δcCe−δbBaeδbBeδcC = a+ a× (δbB + δcC) + δ2 (...)

' e−(δbB+δcC)ae(δbB+δcC) (123)

Illustrating that to first order, small rotations commute and
the bivector of the rotation is simply the sum of their bivectors.
Returning to the distributed element model, the total rotor for
a single unit cell as depicted in Figure 18 is,

e
x
2Xe

r
2Re

b
2Be

g
2G (124)

Where x, r, b and g are scalars, and X,R,B, and G are the
bivectors given in section VI-C. In the limit that x, r, b and
g become infinitely small, the rotor for a distributed element
unit cell becomes

lim
x,r,g,b→0

e
x
2Xe

r
2Re

b
2Be

g
2G ' e 1

2 (xX+rR+bB+gG). (125)

Once the limit is taken, the values of x, r, b and g become
distributed, meaning they have units inversely proportional to
distance. The rotor for a section of line of length l, is therefore
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Rxrbg ≡ e
l
2 (xX+rR+bB+gG). (126)

Expanding the generator and grouping like terms yields,

Rxrbg =

l

2
((x+ b) e12 + (x− b) e24 + (g + r) e34 + (g − r) e13) .

(127)

This bivector contains all of the physics of a distributed ele-
ment transmission line. It produces bivectors which are outside
of the discrete element group. The e12 and e34 components are
recognized as euclidean rotations and dilations, respectively.
Anticipating the importance of these bivectors in the analysis
to follow, assign variables and make note of their properties.

L ≡ e12 (128)
A ≡ e34 (129)

They are orthogonal,

L ·A = 0, (130)

dual to one-another,

AI = L, (131)

and affected by time-reversal with

Ā = A (132)
L̄ = −L. (133)

Additionally, L is time-like, and A is space-like. The rotors
which employ these bivectors can be defined,

Rl ≡ eθe12

Ra ≡ e−
1
2 ln(α)e34 .

While the subscripts l and a do not match the scalar
arguments of the rotor, they do match bivector variables and
the description for the circuits which produce them, i.e. a line
and attenuator. To explore the effects of the various bivector
components in eq (127), we examine a few special cases of a
the distributed element transmission line model.

A. Lossless

In the case of a lossless line the resistance and conductance
are zero, g = r = 0. In this case we are left with rotations in
both e12 and e24 in amounts that depend on the difference
between b and x. The nature of these rotations can best
understood by visualizing their effect on the Smith Chart, as
shown in Figure 19. When b

x = 1, the distributed element
bivector reduces to e12. This produces a euclidean rotation
of the reflection coefficient centered at 0, shown in Figure
19b. Rotations of this type are expected from an ideal lossless
transmission line, and produce paths known as Standing Wave
Ratio (SWR) Circles. Depending on the signs of b and x,

either clockwise or counterclockwise rotations are produced.
These two scenarios depict right-handed, and left-handed
transmission lines.

In the case where the normalized susceptance is larger
that the reactance, b

x > 1, the rotation shown in 19a is
produced. This is a non-euclidean rotation centered about
the normalized characteristic impedance of the line, a fact
proved later in this section. A transmission line of this type is
more susceptive than the reference impedance. The term more
susceptive generally implies more capacitive, but this requires
a sign choice for b which we choose not to make at this point.
Leaving the sign ambiguous allows for artificial transmission
lines. In either case, the sign only changes the direction of the
rotation, so its a minor difference to the geometry. The final
case, b

x < 1, is similar to the susceptive case, but is more
reactive rather than susceptive.

In the extremes that b
x � 1 or b

x � 1,the generators
reduce to B and X , and produce the rotations shown in Figure
16. This makes sense, because summing a series of mostly
reactance elements is equivalent to a lumped reactance and
likewise for susceptance. Reflecting on Figure 19, we see there
is a smooth transition between: pure susceptance, a susceptive
line, a matched line, a reactive line, and pure reactance.

B. Non-propagating

Before examining lossy lines, it helpful to look at the effects
of non-propagating lines, i.e. x = b = 0 but g 6= 0 and/or
r 6= 0, because they are dual to the lossless case. Looking at
eq (127), these conditions will produce rotations in e34 and
e13 in amounts depending on the ratios of r and g. Proceeding
in a similar way as with the lossless lines, the contours created
by such rotations are plotted on the Smith Chart in Figure 20.
In the extremes that g

r � 1 or g
r � 1, the rotation bivectors

reduce to G and R, as shown in Figure 16. Analogous to
the lossless cases, there is a smooth transition between: pure
conductance, a conductive attenuator, a matched attenuator, a
resistive attenuator, and pure resistance.

C. Lossy

In the general case of lossy lines several different rotations
can be produced. In general they are all spirals, which center
about the characteristic impedance. We examine a few cases of
lossy lines in Figure 21. When b

x = r
g = 1, the line is matched,

and this results in a rotation centered about the center of the
Smith Chart as shown in Figure 21b. The bivector contains
only components in e12 and e34, which are recognized as
euclidean rotation and scaling operators. As the line becomes
more conductive g

r > 1, the characteristic impedance moves
downwards and to the right. And when the line becomes more
resistive g

r < 1, the characteristic impedance moves upwards
and to the left.

While more work could be done to characterize the dynam-
ics of different transmission lines, we move on to an alternative
model for the same circuit which uses a matched/mismatched
dichotomy instead of the distributed elements. By relating the
two models components of the distributed element bivector are
given physical meaning.



2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2727819, IEEE Access

16

(a) Rotations with b
x
> 1. (b) Rotations with b

x
= 1 (c) Rotations with b

x
< 1

Figure 19: Rotations produced by a lossless distributed element model, showing the effects of different ratios of distributed reactance and
susceptance. The rotation direction (clockwise vs counterclockwise) changes depending on the signs of b and x.

(a) Rotations with g
r
> 1. (b) Rotations with g

r
= 1 (c) Rotations with g

r
< 1

Figure 20: Rotations produced by a distributed loss, showing the effects of different ratios of distributed resistance and conductance. The
rotation direction (clockwise vs counterclockwise) changes depending on the signs of g and r.

(a) Rotations with b
x
= 1, g

r
> 1. (b) Rotations with b

x
= 1, g

r
= 1 (c) Rotations with b

x
= 1, g

r
< 1

Figure 21: Rotations produced by lossy lines. The amount of loss is exaggerated from typical values to show the characteristics of the
rotation.
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D. Relating the Distributed Element and Transformer Models

When b
x 6= 1 and/or r

g 6= 1, the distributed element
model results in a mismatched transmission line. Another way
to represent a mismatched transmission line is to sandwich
a matched line in between two impedance steps of equal
but inverse impedance changes. This may be referred to
as the transformer model. An illustration of a mismatched
transmission line realized in half-space, and the corresponding
impedance step circuit model is shown in Figure 22. A change
in line impedance can be modeled as a scaling and rotation
in the impedance domain, operations which are implemented
with N and Q bivectors as found earlier. It is most common
to deal with changes in real characteristic impedance, which
is equivalent to scaling, so we focus on effects of N for now.
The rotor used to scale an impedance by a factor of n, i.e.
z → nz was found to be

Rn = e−
1
2 ln(n)e14 . (134)

An impedance scaling of inverse amount n → 1
n , is equal

to the reversed rotor,

e−
1
2 ln( 1

n )e14 = e
1
2 ln(n)e14 = R̃n (135)

Using this result, a lossless, mismatched transmission line
may be represented in the transformer model as,

R̃nRlRn = e
1
2 ln(n)e14eθe12e−

1
2 ln(n)e14 . (136)

This equation could be interpreted as boosting the e12 plane,
borrowing language from relativity. A relationship between the
transformer and distributed element models must exist because
they represent the same physical circuit. This knowledge
allows us to equate the rotors for each model.

e
l
2 (xX+bB) = e

1
2 ln(n)e14eθe12e−

1
2 ln(n)e14 (137)

Explicit relationship between these two parameterizations
can be found by further equating their generators, which
requires the bivector argument for the transformer model to
be found. To do this, note that rotating a rotor is equivalent to
rotating it’s bivector argument [9].

ReBR̃ = eRBR̃ (138)

Where R is a rotor and B is a bivector. This allows the
transformer’s generator to be found by,

Rne12R̃n =e
1
2 ln(n)e14θe12e

− 1
2 ln(n)e14

=θ (cosh (ln (n)) e12 + sinh (ln (n)) e24) . (139)

Which provides an interpretation for the e24 component in
the distributed element bivector as the result of mismatching
a lossless line. Setting eq (139) equal to eq (127), produces
the following relationships,

l

2
(x+ b) = θ cosh (ln (n)) (140)

l

2
(x− b) = θ sinh (ln (n)) . (141)

Z0 Z0

Rn RnRl

1:n

nZ0

n:1

Figure 22: A lossless mismatched transmission line in half-space
(above) and it’s equivalent circuit model (below). The Rn-blocks
represent impedance discontinuities, and the RL a matched line.

This pair of equations may be solved for the impedance
scaling factor n in terms of distributed elements.

n =

√
x

b
(142)

Similarly, the electrical length of the line can be found.

θ =
l

2

√
xb (143)

Thus, the impedance scaling factor n is the normalized
characteristic impedance of the lossless transmission line
between the impedance steps. This proves the earlier claim
that the rotations shown in Figure 19 rotate about the line’s
characteristic impedance. To see this, note that eq (136) moves
the impedance value n to the origin, rotates by θ, then moves
the origin back to an impedance value of n. Therefore, the new
center of rotation will be at an impedance of n. Computing
where Rn moves the center of the rotation can done explicitly.

↓ Rneo ˜Rn = ↓ e− 1
2 ln(n)e14 (e4 − e3) e

1
2 ln(n)e14

= ↓ (−e3 + cosh (ln (n)) e4 + sinh (ln (n)) e1)

= tanh

(
1

2
ln (n)

)
e1

=
n− 1

n+ 1
e1 (144)

Which is the reflection coefficient for an impedance value
of n, as claimed.

E. Units of Distributed Elements

The meaning of b and x as normalized quantities may appear
strange given no characteristic impedance has been defined. In
essence, if b and x are set to be equal, then we have implicitly
defined the characteristic impedance. To see this, express b and
x in terms of the characteristic impedance and admittance.

x =
x′

Z0
b =

b′

Y0
(145)

Where x′ and b′ are the un-normalized values of distributed
reactance and susceptance, respectively. By setting

x

b
= 1. (146)
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We have implied

x′

Z0

Y0
b′

= 1

x′

b′
= Z2

0 . (147)

Which defines Z0. Similarly the product of xb in eq (143)
defines the normalized propagation constant,

√
xb =

√
x′

Z0

b′

Y0
=
γl
γ0

(148)

F. Systematic Method for Determining Equivalent Circuits of
Mismatched Transmission Lines

So far, two parameterizations for a specific class of mis-
matched transmission lines have been developed. Namely,
the distributed element model containing reactance and sus-
ceptance has been related to a lossless transmission line
mismatched by an impedance scaling. It is conjectured that
the general case of a arbitrarily mismatched lossy line can be
modeled as matched transmission line sandwiched in between
two arbitrary impedance steps, given by,

R̃nR̃qRlRaRqRn. (149)

This rotor has 4 degrees of freedom (n, q, θ, α), which
matches that of the distributed element model (r, x, g, b), as
required. The commutation relations of the bivectors allows
the transformer model to be put into the more concise form,

R̃nqRlaRnq. (150)

Where,

Rla = eθe12−ln(α)e34 (151)

Rnq = e−(qe23+ln(n)e14). (152)

The statement expressing the equivalence between the trans-
former model and the distributed element model is most
concisely written.

R̃nqRlaRnq = Rxrgb (153)

Given this expression, determining relationships between
the two parameterizations reduces to equating the generators
for each rotor, a procedure which can be done systemati-
cally. A thorough classification of transmission lines and the
relationship between the transformer and distributed element
model would be interesting to work out in the future.

G. Discussion

The CGA operator framework has been used to derive the
effects of distributed element transmission lines without dif-
ferential equations. However, we are not suggesting the classic
analysis of transmission lines by way of the telegrapher’s equa-
tions should be forgone. Instead, our goal has been to demon-
strate that the unique ability of CGA to handle non-euclidean
rotations allows the physics of non-matched transmission lines

to be more accurately expressed. The relationship between the
distributed circuit and transformer models has been derived,
and the characteristic impedance was shown to be a fixed point
of the CGA rotations for lossless lines. It is interesting that
the three specific classes of transmission lines correspond to
the three classes of Möbius transformations [17]. The lossless
lines are elliptic, the distributed loss lines are hyperbolic,
and the lossy lines are loxodromic. This can be proved by
an analysis of their fixed points. Additionally, because every
Möbius transformation has two fixed points, every mismatched
transmission line produces two characteristic impedances, one
of which is active. Increasing the radius of the Smith Chart
beyond unity allows both fixed points to be seen. While a
fixed point analysis with CGA would be interesting, we instead
move on to demonstrate an example application to impedance
matching, and leave the fixed point analysis for future study.

VIII. IMPEDANCE MATCHING

In this section the results derived thus far are applied to
problems of impedance matching. Specifically, the topologies
of single shunt stub tuner and the impedance transformer are
solved. Both of these problems are approached with the same
technique.

1) Determine the operator representation of the network
2) Invert the operator, to produce an equation for the

unknown load
3) Solve for the rotor parameters.

By using CGA operators, all networks have similar functional
forms regardless of their domain. Therefore, we choose to
solve the problem entirely in terms of reflection coefficient
(the s-domain), so that it can be visualized on the Smith Chart.
The invertability of the verser product makes computing the
solution straightforward, but does not grantee a simple result.

A. Transmission Line Stubs

Terminated transmission lines, aka ’stubs’, are commonly
employed in problems of impedance matching at microwave
frequencies where lumped elements are not realizable. Given
the operator for a lossless transmission line, the susceptance
of transmission lines terminated with either a short or open
circuit may be found and implemented with the susceptance
rotor. The conformal vector for an open circuit in the s-domain
is

↑ (e1) = e1 + e4 (154)

The susceptance of a lossless transmission line terminated
in an ideal open circuit is then,

RysRl (e1 + e4)R∼l R
∼
ys = sin (2θ) e2 − cos (2θ) e3 + e4

(155)

Similarly for a shorted shunt stub

RysRl (−e1 + e4)R∼l R
∼
ys = − sin (2θ) e2 + cos (2θ) e3 + e4

(156)
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Because this result occupies only three dimensions, it can
be visualized. As θ varies, the susceptance of the stubs sweep
out circular paths in a 3-dimensional subspace defined by the
trivector e2 ∧ e3 ∧ e4. As shown in Figure 23, the open and
short stubs are vectors that rotate about the e4-axis antipodally.
As they cross the E0-plane they pass through the eo and e∞
vectors.

e3

e4

e2

-

e∞

eo

Figure 23: Subspace projection of conformal vectors representing the
susceptance of shorted/opened transmission lines.

Down projecting this open stub returns the familiar formula

↓ (sin (2θ) e2 − cos (2θ) e3 + e4) = tan (θ)e2 (157)

Using this result, the operator for a shunted transmission
line terminated with an ideal open circuit is constructed.

Ros ≡ e
1
2 tan(θ)(e12+e24) (158)

Similarly,the operator for a shunted transmission line termi-
nated with an ideal short circuit is,

Rss ≡ e−
1
2 cot(θ)(e12+e24) (159)

Loss present within the stubs can be added by cascading
the dilation rotor given in table III. For example, to add loss
to the shorted shunt stub

e−
1
2 lnλe34e−

1
2 cot(θ)(e12+e24) (160)

The loss factor λ can be replaced by a function of electrical
length θ if desired. More detail on lossy transmission lines is
given in Section VII.

B. Shunt Stub Impedance Matching

A shunt stub matching circuit provides a network topology
that can match an arbitrary load impedance to some line
impedance at a given frequency. The network is shown in
figure 24a, where ZL is the load impedance, Z0 is the line
impedance, and θ and φ are the series and shunt line-lengths,
respectively. The problem is to choose θ and φ so that the
input reflection coefficient Γin is zero.

The desired condition is a match at the input, i.e. a reflection
coefficient of 0. Starting from this known condition, the
problem may be solved in reverse by inverting the network in
figure 24a to produce the network shown in figure 24b. From
this orientation the matched line impedance is seen through the

ZLZ0

φ

Γ in

θ

(a) Single stub matching network.

Z0

ΓL

θ

φ

(b) Inversion of the single stub matching
network.

Figure 24: Networks for single stub impedance matching

B-Rota t ion L -Rota t ion

eo

ΓL

Figure 25: A possible path from eo to ΓL produced by the inverse
shunt stub network.

series transmission line, then the shunted stub. In language of
operators, this inverted network takes eo through a B-rotation,
then a L-rotation, to end up at some desired load reflection
coefficient ΓL. An illustration of the path produced by these
operators, as seen projected on the Smith Chart, is shown
in Figure 25. The combined operator for the network is a
expressed by

ΓL = eθe12e
1
2 cot(φ)Beoe

− 1
2 cot(φ)Be−θe12 (161)

Down-projecting the results gives the formula,

γL = ↓ ΓL

=− (
1

2
cos(2θ) +

1

2
cos(2(φ-θ)))e1 +

(
1

2
sin(2θ)− 1

2
sin(2(φ-θ)))e2 (162)

Which is complicated, but by noticing that the magnitude of
the reflection coefficient is only influenced by the shunt stub,
taking the magnitude and angle (with respect to e1) decouples
the interdependence,
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|γL|2 =
1

4 tan2 (φ) + 1
(163)

tan (∠γL) =
tan (2θ) + 2 tan (φ)

2 tan (2θ) tan (φ)− 1
(164)

These can be inverted to give direct expressions for the stub
lengths

φ = arctan

(
1

2 |γL|

√
1− |γL|2

)
(165)

tan (2θ) =
2 tan (φ) + tan (∠γL)

2 tan (φ) tan (∠γL)− 1
(166)

C. Impedance Transformer
A impedance transformer is a circuit topology used to match

real load impedance by using 90◦ section of mismatched
transmission line. Given a known system and load impedance,
the design goal is to determine the line impedance which
creates the matched condition, Γin = 0. A circuit diagram for
this topology is show in Figure 26, where Z0 is the system
impedance, nZ0 is the transformer’s line impedance, and ZL
is the load.

ZLZ0

Γ in

π
2
nZ0

Figure 26: Network for an impedance transformer.

As described in Section VII-D, the operator for this circuit
may be constructed from an impedance step, a matched line
of 90◦, and another impedance step of inverse magnitude.

Rml = R̃nRlRn

= e
1
2 ln(n)e14e

π
2 e12e−

1
2 ln(n)e14 (167)

= cosh (ln (n)) e12 + sinh (ln (n)) e24. (168)

An illustration of the path created from these operators is
shown in Figure 27. By using a line of 90◦, the L-rotation
rotates the load by π. Proceeding in a similar way as with the
single stub problem, the circuit is inverted so that the system
impedance is seen through the line. This produces expressions
for the normalized load impedance directly.

γL =↓
(
R̃mleoRml

)
= − tanh (ln (n)) e1

=
1− n2

1 + n2
e1 (169)

The result is usually given in the impedance domain.

zL =↓
(
RzsRmleoR̃mlRzs

)
=

1

n2e1
(170)

eo

ΓL

L-Rota t ion

N-Rota t ion

N-Rota t ion

Figure 27: Path taken by a matched load as produced by a mismatched
transmission line.

Which is the correct, but expressed in normalized units. To
solve the more general case in which the load is not real,
the same steps are applied but with the more general operator
for a line of unspecified length. Down-projecting R̃mleoRml
produces the equations.

|γL|2 =
tan2 (θ) sinh2 (ln (n))

tan2 (θ) cosh2 (ln (n)) + 1
(171)

tan (∠γL) = − 1

tan (θ) cosh (ln (n))
(172)

These expressions are intertwined in both θ and n as one
would expect by looking at the Carter Chart.

IX. ADVANTAGES OF CGA

For those unfamiliar with geometric algebra, making use
of our results will require a significant investment. Therefore,
this section presents arguments for why the investment might
be made.

Geometric Insight : The most important advantage of
using CGA is the geometric insight it provides. The inability
of complex algebra to handle more than two dimensions causes
much of the structure present in transmission line theory to be
hidden. For example, the normalized input impedance of a
normalized load z as seen through a lossless transmission line
is conventionally described by the following formula.

z + j tan (θ)

1 + zj tan (θ)
(173)

This formula has no geometric interpretation. In contrast,
CGA allows this relationship to represented as a rotation in
the e23 plane by an angle of 2θ. It has been shown how
CGA naturally leads to the discrete element bivector group
and non-euclidean rotations. In addition, the Smith Chart and
the Riemann Sphere have been identified as part of a coherent
evolution of projective geometry that eventually leads to CGA.

Simplicity: One criticism of the current theory is that
it is more complicated than the traditional, two-dimensional
theory. To reflect, the CGA framework has replaced a set
of Möbius transformations in a Euclidean plane, with rota-
tions in a 4-dimensional Minkowski space. In other words,
complicated transformations in a simple space have been
replaced by simple transformations in a complicated space, a
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reoccurring theme in electrical engineering. The conventional
two-dimensional space is simpler precisely because it fails
to accurately model the sophistication of the physics. There
are many cases in which usage of this simplified space is
advantageous, and it is not expected that CGA will replace
every instance of computation that engineers make on a
daily basis. However, simplicity should not be confused with
familiarity.

From a modeling perspective, the ability of the CGA opera-
tor formalism to consistently transform operators and operands
is an increase in both clarity and simplicity. This property,
known as covariance, has been demonstrated by transforming
transmission line operators to different domains and in repre-
senting a mismatched transmission line as matched line that
is operated on by an impedance mismatch. Additionally, this
approach is more easily implemented in software.

Scalability: An inherent problem with the conventional
theory is its lack of scalability. Because the individual transfor-
mations are non-linear, each additional component increases
the overall complexity of a result. For example, to compute the
effect of adding series resistance on the reflection coefficient
using conventional theory, one does the following: take the
present value of reflection coefficient s, and transform it to
the impedance domain.

z =
1 + s

1− s
(174)

Next, add the resistance r, producing the new load
impedance z′.

z′ = z + r (175)

Then transform back into reflection coefficient, s′.

s′ =
z′ − 1

z′ + 1
(176)

Finally, compile of these operations into a single equation,

s′ =
1+s
1−s + r − 1
1+s
1−s + r + 1

(177)

Due to this lack of scalability, the entire expression becomes
uninterpretable. In response, engineers invent graphical aids
such as Smith Chart. Compare eq (177) with its equivalent
expression in CGA.

S′ = e
r
2 (e34−e13)Se−

r
2 (e34−e13) (178)

Not only does this representation separate the operand
from operator, but it has a definite geometric interpretation.
By supporting non-euclidean rotations, the familiar contours
of the Smith Chart can be expanded to include impedance
transformations, and the effects of mismatched lines. In CGA,
each individual transform, as well as an arbitrary number
of cascaded transforms are all represented with rotations.
Therefore, once the mathematics of rotations is mastered,
problems of great complexity can be tackled.

Domain Invariance and Singularity Avoidance: As just
demonstrated, the dependence of a circuit’s mathematical
complexity on the choice of representation forces one to switch
domains regularly. The domain invariance produced by CGA
solves this problem completely. Additionally, many of the sin-
gularities caused by values of 0 and ∞ are removed by using
CGA, regardless of the chosen domain. These singularities
are removed by replacing the concept of distance with that of
direction, an important feature of projective geometry.

Universality : It has been argued elsewhere [21] that the
adoption of geometric algebra is a necessary step required
to unify the splintered world of applied mathematics. We
agree with this perspective and further believe that univer-
sal adoption is inevitable. At first glance, the construction
presented in this paper may appear highly specialized, and
applicable only to transmission line theory. However, the G3,1

algebra is identical to the Space-Time Algebra (STA) used
by physicists working with relativity. It is likely that many
analogues can be made between the circuit transformations
and Lorentz transformations, a topic which deserves study. In
addition to the efforts of physicists, many results in CGA have
been produced by engineers working in fields of computer
graphics and computer vision. The universality of GA makes
this type cross-disciplinary collaboration practical.

X. CONCLUSION

A. Verification and Summary of Results

The versors and their generating bivectors developed in the
later sections are summarized in Table V. Many of the results
presented were found using galgebra [22], an open-source
symbolic clifford algebra module for python. galgebra is
especially useful for many of the tedious down-projection
computations. In addition, all of the results have been numer-
ically verified to be consistent with the conventional theory,
where possible. These numerical tests were done using using
the open-source python module clifford. A git reposi-
tory containing the verification suite is available online at
https://github.com/arsenovic/. Questions and comments on the
code are welcomed by the author.

B. Discussion

The application of Conformal Geometric Algebra to trans-
mission line theory has been presented. The preliminary results
appear promising and justify continued development of the
subject. To review, the fundamental network operations such
as adding impedance or admittance elements and cascading
transmission lines have been implemented with rotations in a
four dimensional Minkowski space. Additionally, it has been
shown that the different circuit representations: impedance,
admittance, and reflection coefficient, are also related by rota-
tions. In doing so, the majority of relationships in transmission
line theory have been linearized. Common transmission line
formulae have been replaced with a bivector algebra and
an associated operator framework. A demonstration of the
framework has been made by computing rotors for mismatched
transmission lines, and solving impedance matching problems.
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Circuit Generator versor

Lossless Transmission Line L = e12 eθL

Attenuation/Gain A = e34 e−
1
2
lnαA

Resistance R = (e34 − e13) e
r
2
R

Reactance X = (e12 − e24) e
x
2
X

Conductance G = (e34 + e13) e
g
2
G

Susceptance B = (e12 + e24) e
b
2
B

Impedance Step (mag) N = e14 e−
1
2
ln(n)N

Impedance Step (phase) Q = −e23 e
θ
2
Q

Shunted Open Stub B e
1
2

tanθB

Shunted Short Stub B e−
1
2
cotθB

Table V: CGA generating bivectors and versors for circuit compo-
nents.

All of the results presented have been verified to be numeri-
cally consistent with the conventional theory, where possible.
Finally, an argument for the adoption of the current theory has
been presented, and we hope it is convincing.

C. Future Work

We plan to follow this paper with another demonstrating
continued applications of CGA transmission theory. Some
areas of interest mentioned throughout this paper are trans-
mission line classification, fixed points analysis, and active
impedance matching. Other areas which we think will pro-
duce useful results are multi-section impedance transformers,
periodic structures (filters), artificial transmission lines, and
reflectometer calibration. Symmetric N-port structures could
also be investigated, given that they are generally decomposed
into a set of one-port circuits. In addition to various circuit
architectures, the CGA operator framework should be useful
for uncertainty propagation, given that all of the functions are
reduced to rotations. A foundation for this work has already
been accomplished in [23].
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